Problem Analysis Session

SWERC Judges

SWERC 2015

Problem	Est. \# ACC	\# ACC $<$ 4h
A - Promotions	27	12
B - Black Vienna	8	4
C - Canvas Painting	12	12
D - Dice Cup	47	52
E - Wooden Signs	15	16
F - Landscaping	3	2
G - Game of Cards	3	7
H - Sheldon Numbers	25	26
I - Text Processor	1	0
J - St. John's Festival	5	11

H - Sheldon Numbers

Problem

Given two positive integers A and B, compute the number of integers in the range $[A, B]$, whose binary representation has the form $1^{n}\left(0^{m} 1^{n}\right)^{k}$ or $1^{n}\left(0^{m} 1^{n}\right)^{k} 0^{m}$.

Classification

- Categories: Number Theory
- Difficulty: Easy

H - Sheldon Numbers

Sample Solution

- Testing if each integer is a Sheldon Number is not feasible given the limits on A, B
- However, we can easily generate Sheldon Numbers \leq limit bits: for $n \leftarrow 1$ to limit // number of ones for $m \leftarrow 0$ to limit $-n \quad / /$ number of zeros $k \leftarrow 0 \quad / /$ repetitions
while $n+k \times(n+m) \leq$ limit
generate $1^{n}\left(0^{m} 1^{n}\right)^{k}$
$k \leftarrow k+1$
// and similar for numbers of the form $1^{n}\left(0^{m} 1^{n}\right)^{k} 0^{m}$
- A few thousands under 63 bits: we can just generate all of them
- Need a collection to remove duplicates (e.g. Array/List/TreeSet/...) and count elements in the range $[A, B]$

A - Promotions

Problem

Given a directed acyclic graph where each edge (x, y) means that employee y may be promoted only if employee x is promoted, and a number N of promotions (which is an endpoint of $[A, B]$):

- How many employees will certainly be promoted?
- How many employees have no possibility of being promoted?

Classification

- Categories: Graph Theory
- Difficulty: Easy

A - Promotions

Sample Solution

- DAG with V nodes and E edges; N promotions.
- Employee x has no possibility of being promoted if the number of predecessors of x (excluding $x)$ is at least N :

$$
\operatorname{Pred}(x) \geq N
$$

- Employee x will certainly be promoted if the number of successors of $x(\operatorname{excluding} x)$ is at least $V-N$:

$$
\operatorname{Suc}(x) \geq V-N .
$$

- For every employee x, compute $\operatorname{Pred}(x)$ and $\operatorname{Suc}(x)$.
- Any $\mathcal{O}\left(V^{2}+V E\right)$ time algorithm (BFS/DFS/TS) was accepted.

C - Canvas Painting

Problem

Given the sizes of the canvasses Samuel bought, find the minimum amount of ink the machine needs to spend in order to have all canvasses with different colors.

Classification

- Categories: Greedy, Huffman Coding
- Difficulty: Medium

C - Canvas Painting

Sample Solution

- Lets think backwards: merge blocks of distinct colors into one.

- Consider that the canvasses sizes are the weight of each node. The problem becomes equivalent to building the Huffman tree to minimize $\sum_{i=1}^{N} \operatorname{size}_{i} \times \operatorname{length}\left(c_{i}\right)$

C - Canvas Painting

Sample Solution

- We can build the Huffman tree in $\mathcal{O}(N \log N)$
- Insert the given sizes in a priority queue
- While we have more than one item
- Pop the two smallest items A and B
- Add $A+B$ to the result
- Push $A+B$ into the priority queue

J - Saint John Festival

Problem

Given two sets of points \mathcal{A} and \mathcal{B} in the plane, how many points in \mathcal{B} are in the interior or on the boundary of triangles defined by any 3 points in \mathcal{A}.

Classification

- Categories: Geometry
- Convex hull
- Point in convex polygon
- Difficulty: Medium

J - Saint John Festival

Sample Solution

Background (from Charatheodory's Theorem): The union of all triangles having vertices in \mathcal{A} is the convex hull $\mathcal{C H}(\mathcal{A})$ of \mathcal{A}.

(1) Find $\mathcal{C H}(\mathcal{A})$ in $\mathcal{O}(L \log L)$, e.g., by Graham scan, with $L=|\mathcal{A}|$.

- Do not compute polar angles.
- Make use of primitive operations based on cross product and inner product: left-turn, right-turn; handle collinearities.
(2) Then, for each $p \in \mathcal{B}$, check if $p \in \mathcal{C H}(\mathcal{A})$ efficiently.

J - Saint John Festival

Sample Solution

For each $p \in \mathcal{B}$, check if $p \in \mathcal{C H}(\mathcal{A})$ in $\mathcal{O}(\log h)$, where h is the number of vertices of $\mathcal{C H}(\mathcal{A})$.

- $\mathcal{C H}(\mathcal{A})$ partitioned into wedges with apex p_{0} (the lowest vertex);
- The wedges are already sorted. Binary Search for finding p.

[^0]- $\mathcal{C H}(\mathcal{A})$ is a convex polygon.
- Overall time complexity: $\mathcal{O}(L \log L+S \log h)$ or $\mathcal{O}((L+S) \log L)$.
- Robust: L-turn; R-turn; collinear; point in line segment.
- Other partitions of $\mathcal{C H}(\mathcal{A})$, e.g., in two monotone chains.
- Optional filter: $p \in \operatorname{MBBox}(\mathcal{C H}(\mathcal{A}))$?

D - Dice Cup

Problem

Given the number of sides of 2 dice, compute the most likely outcomes for the sum of two dice rolls. Assume each die has numbered faces starting at 1 and that each face has equal roll probability.

Classification

- Categories: Math, Mode
- Difficulty: Easy

D - Dice Cup

Sample Solution \#1

- Enumerate possible values for each die: $v_{1} \leftarrow 1$ to $N, v_{2} \leftarrow 1$ to M
- Count occurrences of the sums $v_{1}+v_{2}$ in an array (histogram)
- Output all sums with the most occurrences

Sample Solution \#2

- Observe that the most likely values are just $1+\min (N, M)$ to $1+\max (N, M)$

B - Black Vienna

Problem

Count sets of three suspects (Black Vienna) that are not in either of two player's hands using their replies to investigations.

Classification

- Categories: Satisfiability
- Difficulty: Medium

B - Black Vienna

Base Approach

- There are only $\binom{26}{3}=2600$ choices for the BV; we can enumerate them and check all investigations.
- However, there are 2^{26-3} assignments of the remaining suspects to players - too much to try out exhaustively.

B - Black Vienna

Sample Solution

- For each choice of BV , encode investigations as boolean XOR clauses
- Consider 2×26 boolean variables $A_{1}, A_{2}, B_{1}, B_{2}, \ldots Z_{1}, Z_{2}$
- Variable X_{i} is 1 iff player i holds suspect X
- For each investigation, add constraints (3 possible replies):

$$
\begin{array}{llll}
\mathrm{AB} & \text { i } & 0 & A_{i}=0 \wedge B_{i}=0 \\
\mathrm{AB} & \text { i } & 2 & A_{i}=1 \wedge B_{i}=1 \\
\mathrm{AB} & \text { i } & 1 & A_{i} \oplus B_{i}=1
\end{array}
$$

- For each suspect X in BV : add constraints $X_{1}=0 \wedge X_{2}=0$
- For remaining suspects Y : add constraints $Y_{1} \oplus Y_{2}=1$

B - Black Vienna

2 Possibilities:

(1) Use 2-SAT:

- Turn XOR clauses into 2-SAT form: $A \oplus B=(A \vee B) \wedge(\neg A \vee \neg B)$.
- 2-SAT can be checked in linear time.
(2) Solve XOR satisfiability directly using Gaussian elimination in $O\left(N^{3}\right)$ time.

E - Wooden Signs

Problem

Count the number of wooden signs that can be encoded by a given permutation π of $1 . .(N+1)$ according to some crafting rules.
Equivalently, how many row convex permutominoes are encoded by π ?

Classification

- Categories: Dynamic Programming
- Difficulty: Medium

E - Wooden Signs

Sample Solution

$\left(\pi_{j} \mid \pi_{k}, \pi_{k+1} \ldots\right)$, with $k>j$	Case
$\pi_{j}>\pi_{k}>\pi_{k+1}$	1
$\pi_{j}<\pi_{k}<\pi_{k+1}$	1
$\pi_{j}>\pi_{k}<\pi_{k+1}, \pi_{j}>\pi_{k+1}$	2
$\pi_{j}<\pi_{k}>\pi_{k+1}, \pi_{j}<\pi_{k+1}$	2
$\pi_{j}>\pi_{k}<\pi_{k+1}, \pi_{j}<\pi_{k+1}$	3
$\pi_{j}<\pi_{k}>\pi_{k+1}, \pi_{j}>\pi_{k+1}$	3

(1) $C(j, k)=C(j, k+1) ; \quad C(j, N+1)=1$
(2) $C(j, k)=C(j, k+1)+C(k, k+1)$
(3) $C(j, k)=C(k, k+1)$

- Visit search tree in DFS (with memoization): $\mathcal{O}\left(N^{2}\right)$ time.
- Space $\Theta\left(N^{2}\right)$ accepted but $\Theta(N)$ optimal: keep $C(j, k)$ as $C[j]$.

G - Game of Cards

Problem

Given the description of the piles and the maximum number of cards Alice and Bob can remove, can Alice win the game if she is the first to play?

Classification

- Categories: Game Theory
- Difficulty: Medium-Hard

G - Game of Cards

Sample Solution

- There are evident similarities between this game and Nim.
- Lets imagine that players could always remove any number of cards from any pile:
- Then a player is in a losing position if the xor of the sizes of the piles equals 0 .
- Why? Let $X=n_{1}$ xor n_{2} xor ... xor n_{p}
- An empty board has $X=0$ and is a losing position.
- If $X \neq 0$, then the active player can make $X=0$ by changing the biggest pile.
- If $X=0$, then the board will always have $X \neq 0$ after this move.
- Therefore, $X=0$ has to be a losing position.

G - Game of Cards

Our goal: given our restricted moves, what is each pile's equivalent size in the game of Nim?

- Calculating Grundy Numbers (aka Nimbers):
- A pile with no valid play has a Grundy Number $=0$.
- A position has value of k if we can move to positions with Grundy Numbers $\{0, \ldots, k-1\}$.
- We can find all Grundy Numbers and if Alice can win in $\mathcal{O}(P \times N \times K)$, i.e. trying every move once.
- By the way, every impartial game is equivalent to a Nimber (Sprague-Grundy theorem).

F - Landscaping

Problem

Given a matrix representing a field, the price to change the height of a cell and the price to pay for adjacent cells at different levels, find the minimum amount that you will have to pay.

Classification

- Categories: Graphs - Minimum Cut
- Difficulty: Hard

F - Landscaping

- Trying every modification is prohibitive: $\mathcal{O}\left(2^{N M}\right)$.
- Insight: We are trying to separate the low and the high cells using a simple cost structure.

Solution

We can model our matrix as a graph and find a minimum cut.

Max-Flow Min-Cut theorem:

The maximum amount of flow from the source to the sink node is equal to the minimum cut that separates the 2 nodes.

F - Landscaping

Graph:

- Connect every cell to its neighbors using an edge with capacity A.
- Connect every low cell to a super-low node with capacity B.
- Connect every high cell to a super-high node with capacity B.

I - Text Processor

Problem

Given a string S, a fixed width W, and Q queries, find the number of distinct substrings for each query interval $[i, i+W-1]$.

Classification

- Categories: Strings, Suffix Tree
- Difficulty: Hard

I - Text Processor

Key insight
The number of distinct substrings of a string S is equal to the length of the edges in its Suffix Tree

I - Text Processor

Base Approach

- If we build the suffix tree for each query range and count the length of the tree edges, we can answer all queries.
- Problem: building the suffix tree for each query would have a $\mathcal{O}(Q \times W)$ time complexity, which was too slow.

Sample Solution

- All queries have the same width W. We can use a sliding window.
- The difference between queries i and $i+1$ is adding the letter at position $i+W$ and removing the letter at position i.
- If we build the Suffix Tree online, e.g. using Ukkonen's algorithm, adding a letter follows from the algorithm itself.
- Removing a letter in this sliding window is equivalent to removing the largest suffix of the tree. This can be done in $\mathcal{O}(1)$ amortized time.
- If we keep the sum of the length of the tree edges while we do these operations, we can answer all queries in $\mathcal{O}(|D|+Q)$ time.

I - Text Processor

Adding a letter

- Keep a counter for the number of leaves in the tree.
- Adding a letter increases the number of distinct substrings by the number of leaves in the tree.
- If adding a letter creates a new leaf, add that to both counters.

I - Text Processor

Removing the largest suffix

- The largest suffix is represented in the oldest leaf.
- Keep a queue of the leaves created. Remove the leaf in the front.
- Delete the edges corresponding to this leaf and update its parents if necessary.

Questions?

[^0]: $p \in \operatorname{wedge}(0,2,3)$
 $(0,2, p)$ L-turn
 (0, 3, p) R-turn
 (2, 3, p) L-turn

